Kniha momentálne nie je na sklade
Towards Optimally Diverse Randomized Ensembles of Neural Networks
Autori
136 stránok
Viac o knihe
Focusing on ensemble learning, this work highlights the effectiveness of combining diverse neural network classifiers to achieve improved accuracy over single models. It examines how randomizing neural network parameters can create diverse ensembles, enhancing generalization. By employing a sampling strategy akin to Random Forests, the study aims to foster disagreement among network members. Experimental findings reveal that while inducing diversity in ensembles can be beneficial, it does not always guarantee accuracy improvements, making this research valuable for enthusiasts of ensemble methods and neural networks.
Variant knihy
2017, mäkká
Nákup knihy
Akonáhle sa objaví, pošleme vám e-mail.