Kniha momentálne nie je na sklade

Hierarchical Relative Entropy Policy Search
An Information Theoretic Learning Algorithm in Multimodal Solution Spaces for Real Robots
Autori
Viac o knihe
The book explores the significance of hierarchical structures in enhancing scalability and performance in motor skill tasks. It introduces the concept of a "mixed option policy," where a gating network selects which option to execute, followed by an option-policy that determines the action. This hierarchical approach enables the learning of multiple solutions to problems. The algorithm is grounded in an innovative information theoretic policy search method that effectively manages the exploitation-exploration trade-off, minimizing information loss during policy updates.
Nákup knihy
Hierarchical Relative Entropy Policy Search, Christian Daniel, Gerhard Neumann
- Jazyk
- Rok vydania
- 2014
- product-detail.submit-box.info.binding
- (mäkká)
Akonáhle sa objaví, pošleme vám e-mail.
Doručenie
Platobné metódy
Navrhnúť zmenu
- Titul
- Hierarchical Relative Entropy Policy Search
- Podtitul
- An Information Theoretic Learning Algorithm in Multimodal Solution Spaces for Real Robots
- Jazyk
- anglicky
- Autori
- Christian Daniel, Gerhard Neumann
- Vydavateľ
- AV Akademikerverlag
- Rok vydania
- 2014
- Väzba
- mäkká
- Počet strán
- 68
- ISBN13
- 9783639475999
- Kategórie
- Počítače, IT, programovanie
- Anotácia
- The book explores the significance of hierarchical structures in enhancing scalability and performance in motor skill tasks. It introduces the concept of a "mixed option policy," where a gating network selects which option to execute, followed by an option-policy that determines the action. This hierarchical approach enables the learning of multiple solutions to problems. The algorithm is grounded in an innovative information theoretic policy search method that effectively manages the exploitation-exploration trade-off, minimizing information loss during policy updates.