Optimization of rectifiers for aviation regarding power density and reliability
Autori
Viac o knihe
The intentions of the so-called „More Electrical Aircraft“ (MEA) are higher efficiency and lower weight. A main topic here is the application of electrical instead of hydraulical, pneumatical and mechanical systems. The necessary power electronic devices have intermediate DC-links, which are typically supplied by a three-phase system with active B6 and passive B12 rectifiers. A possible alternative is the B6 diode bridge in combination with an active power filter (APF). Due to the parallel arrangement, the APF offers a higher power density and is able to compensate for harmonics from several devices. The use of the diode bridge rectifier alone is not permitted due to the highly distorted phase current. The following investigations are dealing with the development of an active power filter for a three-phase supply with variable frequency from 360 to 800 Hz. All relevant components such as inductors, EMC-filters, power modules and DC-link capacitor are designed. A particular focus is put on the customized power module with SiC-MOSFETs and SiC-diodes, which is characterized electrically and thermally. The maximum supply frequency slope has a value of 50 Hz/ms, which requires a high dynamic and robustness on the control algorithm. Furthermore, the content of 5th and 7th harmonics must be reduced to less than 2 %, which demands a high accuracy. To cope with both requirements, a two-stage filter algorithm is developed and implemented in two independent signal processors. Simulations and laboratory experiments confirm the performance and robustness of the control algorithm. This work comprehensively presents the design of aerospace rectifiers. The results were published in conferences and patents.