Knihobot
Kniha momentálne nie je na sklade

Nonlinear state and parameter estimation of spatially distributed systems

Autori

Viac o knihe

In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.

Variant knihy

2009, mäkká

Nákup knihy

Kniha momentálne nie je na sklade.