Ageing and the glass transition
Autori
Parametre
Viac o knihe
KlappentextUnderstanding cooperative phenomena far from equilibrium is one of fascinating challenges of present-day many-body physics. Glassy behaviour and the physical ageing process of such materials are paradigmatic examples. The present volume, primarily intended as introduction and reference for postgraduate students and nonspecialist researchers from related fields, collects six extensive lectures addressing selected experimental and theoretical issues in the field of glassy systems. Lecture 1 gives an introduction and overview of the time-dependent behaviour of magnetic spin glasses. Lecture 2 is devoted to an in-depth discussion on the nature of the thermal glass-transition in structural glasses. Lecture 3 examines the glassy behaviour of granular systems. Lecture 4 gives a thorough introduction to the techniques and applications of Monte-Carlo simulations and the analysis of the resulting data through scaling methods. Lecture 5 introduces the zero-range-process concept as simple but subtle model to describe a range of static and dynamic properties of glassy systems. Lecture 6 shows how familiar RG methods for equilibrium systems can be extended to systems far from equilibrium.
Nákup knihy
Ageing and the glass transition, Malte Henkel
- Jazyk
- Rok vydania
- 2007
Doručenie
Platobné metódy
2021 2022 2023
Navrhnúť zmenu
- Titul
- Ageing and the glass transition
- Jazyk
- anglicky
- Autori
- Malte Henkel
- Vydavateľ
- Springer
- Rok vydania
- 2007
- ISBN10
- 3540696830
- ISBN13
- 9783540696834
- Séria
- Lecture notes in physics
- Kategórie
- Skriptá a vysokoškolské učebnice
- Anotácia
- KlappentextUnderstanding cooperative phenomena far from equilibrium is one of fascinating challenges of present-day many-body physics. Glassy behaviour and the physical ageing process of such materials are paradigmatic examples. The present volume, primarily intended as introduction and reference for postgraduate students and nonspecialist researchers from related fields, collects six extensive lectures addressing selected experimental and theoretical issues in the field of glassy systems. Lecture 1 gives an introduction and overview of the time-dependent behaviour of magnetic spin glasses. Lecture 2 is devoted to an in-depth discussion on the nature of the thermal glass-transition in structural glasses. Lecture 3 examines the glassy behaviour of granular systems. Lecture 4 gives a thorough introduction to the techniques and applications of Monte-Carlo simulations and the analysis of the resulting data through scaling methods. Lecture 5 introduces the zero-range-process concept as simple but subtle model to describe a range of static and dynamic properties of glassy systems. Lecture 6 shows how familiar RG methods for equilibrium systems can be extended to systems far from equilibrium.