Knihobot

Can Mathematics Be Proved Consistent?

Gödel's Shorthand Notes & Lectures on Incompleteness

Parametre

Počet strán
276 stránok
Čas čítania
10 hodin

Viac o knihe

Kurt Gödel's groundbreaking work in 1931 revealed profound limitations in formal mathematical systems, particularly through his first incompleteness theorem. He demonstrated that in any sufficiently complex system containing elementary arithmetic, there exist true statements that cannot be proven within that system. This challenged the notion that all mathematical truths could be derived from a finite set of rules. Gödel's insights not only transformed mathematics but also raised critical questions about the consistency and completeness of mathematical proofs, leading to further exploration in the field.

Vydanie

Nákup knihy

Can Mathematics Be Proved Consistent?, Jan von Plato

Jazyk
Rok vydania
2021
product-detail.submit-box.info.binding
(mäkká)
Akonáhle sa objaví, pošleme e-mail.

Doručenie

  •  

Platobné metódy

Nikto zatiaľ neohodnotil.Ohodnotiť